
SUPPLEMENTAL FILE

5 MATHEMATICAL NOTATION
In this paper, we consider real variables. We useR to denote the
set of real numbers. Scalars are denoted by lower case letters,
e.g., s, t. Vectors in R

n are denoted by either bold letters and
numbers, or lower-case Greek letters, e.g.,1,x, π, where1 denotes
a vector all of whose components are equal to one.x

t denotes
the transpose of the vectorx. The notationxi refers to theith
component of the vectorx. Matrices inR

m×n are denoted by either
capital letters or upper-case Greek letters, e.g.,C,P,Λ. I stands
for the identity matrix. IfP ∈ R

m×n, then vec(P ) transforms
P into annm-dimensional vector by stacking the columns. The
equality and inequality symbols,=,≤ and≥ denote component-
wise equality and inequality, respectively, for arrays of the same
size. For example, ifC is anm× n matrix, thenC ≥ 0 denotes the
mn inequalities: each element of the matrixC is nonnegative. The
curled inequality symbols,�,≺,�,≻, denote generalized matrix
inequalities associated with the positive semi-definite cone. That is,
if A,B ∈ R

n×n, thenA � B (resp.,A ≻ B) means thatA−B is
positive-semi-definite (resp., positive definite); andA � B (resp.,
A ≺ B) means thatA−B is negative-semi-definite (resp., negative
definite). We recall that a matrixA ∈ R

n×n is called positive-semi-
definite (resp., positive definite) ifxtAx ≥ 0 (resp.,xtAx > 0)
for all x ∈ R

n (resp.,x 6= 0). If −A is positive semi-definite
(resp., positive definite), thenA is called negative semi-definite
(resp., negative definite).

PROOF OFPROPOSITION1.
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where Eq. (27) follows from the fact thatZ0 is invertible, and
Eq. (28) follows from the properties:πtdP

∗
0 = πtd1π

t
0 = πt0;

πt0P0 = πt0; andπt0P
∗
0 = πt0.

PROOF OFPROPOSITION2. It is straightforward to check that
the perturbation matrixC = (1πtd − P0) ∈ D. That is we have
(i) πtd = πtd(P0 + C); (ii) C1 = 0; (iii) P0 + C ≥ 0. Moreover,
the perturbed matrixP0 + C = 1πtd is a stochastic matrix with
rank one. Therefore, it has a simple eigenvalue 1 corresponding to
eigenvector1, and eigenvalue 0 with multiplicityn − 1. Hence, its
SLEM = 0.

PROOF OFPROPOSITION3. For any vectorf , we introduce its
unique direct sum decompositionf = αf1 + f

⊥, whereαf = πtdf

andf
⊥⊥πd. It is easy to check thatf⊥ is proportional to1 if and

only if f
⊥ = 0.

Let ψ = αψ1 + ψ⊥ be a non-trivial eigenvector (i.e.,ψ⊥ 6= 0)
of P ∗

E with eigenvalueµ. We will look for a vectorφ, in the form

φ = ψ + c1, that satisfiesP (s)φ = (1 − s)µφ. We have

P (s)φ = P (s)ψ + c1 (29)

= (1 − s)µψ + sαψ1 + c1 (30)

= (1 − s)µφ+ (sαψ + c− (1 − s)µc)1, (31)

where Eq. (29) follows from the fact thatP (s) is stochastic, i.e.,
P (s)1 = 1, and Eq. (30) is obtained by replacingP (s) by its
expression in Eq. (15). Therefore, if we chosec =

sαψ
(1−s)µ−1

, we
obtainP (s)φ = (1 − s)µφ.

Let nowφ = αφ1+φ⊥ be a non trivial eigenvector ofP (s) with
eigenvalueλ. In particular,φ⊥ 6= 0. We first show thatλ 6= (1−s).
From Eq. (15), we have

P (s)φ = (1 − s)P ∗
Eφ+ sαφ1 (32)

= (1 − s)P ∗
Eφ

⊥ + (1 − s)αφ1 + sαφ1. (33)

On the other hand, ifλ = 1 − s, then we would have

P (s)φ = (1 − s)φ (34)

= (1 − s)αφ1 + (1 − s)φ⊥
. (35)

By equating Eqs. (33) and (35), we obtain

P
∗
Eφ

⊥ = φ
⊥ −

sαφ

1 − s
1. (36)

It follows that, for any positive integerj we have

P
∗j
E φ

⊥ = P
∗(j−1)
E φ

⊥ −
sαφ

1 − s
1. (37)

Taking the limit asj −→ ∞, and becauseP ∗
E is ergodic, we get

P
∗∞
E φ

⊥ = P
∗∞
E φ

⊥ −
sαφ

1 − s
1. (38)

Thus,sαφ = 0, which implies, from Eq. (36), thatP ∗
Eφ

⊥ = φ⊥.
Hence,φ⊥ is an eigenvector ofP ∗

E corresponding to eigenvalue
1. Therefore,φ⊥ must be proportional to1. We recall thatφ⊥

is proportional to1 if and only if φ⊥ = 0. This results in a
contradiction because of the fact thatφ⊥ 6= 0. Therefore, we
conclude thatλ 6= 1 − s.

Now, we considerλ 6= 1 − s, we will find ψ in the formψ =
φ+ c1, that satisfiesP ∗

Eψ = λ
1−s

ψ. We have

P
∗
Eψ = P

∗
Eφ+ c1 (39)

=
λ

1 − s
φ−

sαφ

1 − s
1 + c1 (40)

=
λ

1 − s
ψ + (−

λ

1 − s
c−

sαφ

1 − s
+ c)1, (41)

where Eq. (39) follows from the stochasticity ofP ∗
E and Eq. (40)

is obtained by replacingP ∗
E by its expression in Eq. (15) and using

the fact thatφ is an eigenvector ofP (s) with eigenvalueλ. Finally,
Eq. (41) follows by replacingφ = ψ − c1. Therefore, if we chose
c =

sαφ
1−s−λ

, we obtainP ∗
Eψ = λ

1−s
ψ.

PROOF OFPROPOSITION4. ‖C(s)‖2 is a convex function in
s, which reaches its minimum ats = 0. Therefore, it must be
increasing fors ≥ 0 (Boyd and Vandenberghe, 2003).
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We also provide an alternative proof as follows: LetA = P ∗
E−P0

andB = 1πtd − P ∗
E. Then, from Eq. (16),

C(s) = A+Bs. (42)

By construction, we have for alls ≥ 0,

‖C(s)‖2 ≥ ‖P ∗
E − P0‖2 = ‖C(0)‖2 = ‖A‖2 ⇐⇒ (43)

max
x:‖x‖=1

< (A+ sB)t(A+ sB)x,x >≥ max
x:‖x‖=1

< A
t
Ax,x >,

where the right hand side equivalence follows from the definition of
the spectral norm given in Eq. (8). Letxs be such that‖xs‖ = 1
and

max
x:‖x‖=1

< (A+sB)t(A+sB)x,x >=< (A+sB)t(A+sB)xs,xs > .

(44)
Then,

< (A+ sB)t(A+ sB)xs,xs > ≥ < A
t
Axs,xs >, (45)

which means

< (AtB +B
t
A+ sB

t
B)xs,xs >≥ 0. (46)

Let s̃ ≥ s. We need to show that

max
x:‖x‖=1

< (A+s̃B)t(A+s̃B)x,x >≥< (A+sB)t(A+sB)xs,xs > .

(47)
It is sufficient to show that

< (A+ s̃B)t(A+ s̃B)xs,xs >≥< (A+sB)t(A+sB)xs,xs > .

(48)
But,

< (A+ s̃B)t(A+ s̃B)xs,xs > − < (A+ sB)t(A+ sB)xs,xs >

= (s̃− s) < (AtB +B
t
A+ sB

t
B + s̃B

t
B)xs,xs >,

which is positive because of Eq. (46).

PROOF OFPROPOSITION5. For 0 ≤ s ≤ 1, we have the
following three properties

πd(s)
t
Q(s) = πd(s)

t (49)

πd(s)1 = 1 (50)

πd(s) ≥ 0. (51)

BecauseQ(s) is ergodic, we know that suchπd(s) exists and is
unique. Let

φ = πd(s) − ((1 − s)π0 + sπd). (52)

Then, we have

φ
t
Q(s) = πd(s)

t − (1 − s)2πt0 − (53)

s(1 − s)πtdP0 − s(1 − s)πtd − s
2
π
t
d

= φ
t + s(1 − s)(πt0 − π

t
dP0) (54)

= φ
t + s(1 − s)(πt0 − π

t
d)P0, (55)

where Eq. (55) follows from the fact thatπt0P0 = πt0. Next, we
notice thatφt1 = 0. Thus, from Eq. (20), we obtain

φ
t
Q(s) = (1 − s)φtP0. (56)

By equating Eqs. (55) and (56), we obtain

φ
t[I − (1 − s)P0] = s(1 − s)(πtd − π

t
0)P0. (57)

Observe that fors > 0, 1 is not an eigenvalue of(1− s)P0. Hence,
I − (1 − s)P0 is invertible, and we have

φ = s(1 − s)[I − (1 − s)P t0 ]−1
P
t
0(πd − π0). (58)

From Eq. (52), we have

πd(s) − πd = φ+ (1 − s)(π0 − πd). (59)

Replacingφ by its expression in Eq. (58), Eq. (59) can be written as

πd(s) − πd = (1 − s)
`

I − s(I − (1 − s)P t0)−1
P
t
0

´

(π0 − πd).
(60)

That is, by factoring by(I − (1 − s)P t0)−1,

πd(s)−πd = (1− s)(I− (1− s)P t0)−1(I−P t0)(π0 −πd). (61)

If P0 is symmetric, then by the spectral theorem we have‖P0‖2 =
λmax(P0) = 1, and by the triangle inequality,

‖(I − (1 − s)P t0)−1(I − P
t
0)‖2 ≤

2

2 − s
,

and thus

‖πd(s) − πd‖ ≤
2(1 − s)

2 − s
‖π0 − πd‖.

In the case of a non-symmetric matrixP0, we use geometric
progression:

[I − (1 − s)P t0 ]−1 =
∞
X

k=0

(1 − s)kP t0 . (62)

We note that the last series is convergent for any0 < s ≤ 1 because
P k0 has a limit ask → ∞. Equation (60) becomes then

πd(s) − πd = (1 − s)

 

I − s

∞
X

k=0

(1 − s)k(P t0)k+1

!

(π0 − πd).

(63)
By noting thatsupk≥1 ‖P

k
0 ‖2 = supk≥1 ‖(P

t
0)k‖2 is finite, we

have the desired upper bound on‖πd(s) − πd‖.

11


